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INTRODUCTION

This report deals with a difficult and unsolved question in fisheries 'biology:
how, and to what extent, can populations of marine fish "compensate" for additional

negative impacts imposed upon them?

In this case the additional impact is the annual killing by SONGS of billions
of early life stages of several fish species. The ability of the populations to
compensate for these deaths will determine whether this 1s one of the most severe,
perhaps even the most severe, negative biological effects of SONGS, or whether it is

a minor effect.

Unfortunately, unlike other potential effects of SONGS examined by the
MRC, direct sampling will not tell us what the effect has been. Because fish,
including their immature stages, move a great deal, any effects will be spread out
over a large area. Consequently there will be no "Control" area with which the
Impact area can be compared; and even a major effect will be so diluted that the
change will be indistinguishable from natural variation except by a massive sampling
program over many years. Thus the only way for us to assess the effects of the
killing of the immature stages is to try to convert the estimated numbers killed into

changes in the population size, by means of models.

These models must include factors representing compensation. There is

little doubt that compensation occurs to some extent: without it, even the slightest

additional source of mortality would cause a population to decline inevitably to

extinction. There is also little doubt that compensation is limited: if enough




additional sources of mortality are imposed, any population will eventually be
driven extinct. Further, the ability to compensate must vary: some populations may
already be compensating for additionallmortality imposed by, for example, fishing or
other power plants, while others are not. How far can a particular population

compensate for mortality such as that imposed by SONGS on immature stages?

Many researchers have examined and failed to answer this question in detail
or with precision (e.g., Barnthouse and Van Winkle 1988, Fletcher and Deriso
1988). We can do no better. Instead, we have assembled in this report the
arguments behind the broad claim in Chapter 10 that likely compensation

mechanisms will not prevent a reduction in the average abundance of adult fish.

We have also attempted to determine the amounts by which some
populations seem likely to decline, based on their Adult Equivalent Losses. It is
important to note that, unlike the losses given for other species, which are based on
estimates of varying precision (which itself can be estimated), the numbers given

here are little more than sophisticated guesses whose reliability is quite unknown.
1. THE MEANING AND IMPLICATIONS OF COMPENSATION

Populations of fish fluctuate in density through time. However, few species
are observed to go extinct or to increase without any apparent limit within
ecological time spans. It can be shown from the study of simple theoretical models
that any population in which the per capita probabilities of a birth or a death over a
specified time interval are unaffected by population density must ultimately behave

in one of three ways:




(i) unlimited growth
(ii)  decline to extinction

(iii) fluctuations of the sort associated with a "random walk”

Possibility (iii), the -random walk, only occurs in the highly unlikely situation
where the per capita probabilities of a birth or a death happen to balance exactly. If
any of the fish populations influenced by SONGS had density-independent birth and
death probabilities with parameter values that placed them on this "knife-edge" of
viability, then the effect of SONGS would be serious, as any additional mortality

would start the process of decline towards extinction.

However the fact that the fish populations under study have survived for
many generations in spite of natural environmental §ariabi1ity suggests that these
populations are to some extent "regulated," which would imply "density dependence”

of per capita birth and death rates. In their simplest form, such density dépendent '

| processes will tend to cause a population that increases above its equilibrium level,

or decreases below it, to return to that equilibrium. So the dynamical system of

‘which the fish population is a part can be thought of as being composed of some

processes whose effect on the birth or death rate of the population 'depends on how
many fish are present (density dependent processes), and other processes whose
effects do not depend on the number of fish present (density independent
processes). The latter inevitably vary in their intensity through time énd SO
contribute strongly to fluctuations in the fish population. The population will not
remain regulated in the presence of these density independent driving forces unless

countervailing density dependent processes occur. Although the detailed dynamics




of real fish populations are typically more complicated than this simplified
description, such additional detail will not affect our broad conclusion that density

dependent processes must be operating.

We define compensation to be the effect on population size of density
dependent factors operating on per capita birth and death rates. It occurs because
the individual fish responds to its environment, which includes other individuals like

it: a reduction in the density of like individuals may make the environment more

- hospitable for those that remain. For example, reducing the density of larvac might

cause the remainder to survive or grow better. Density dependent factors may also
result in rate processes associated with one life stage being influenced by the
population density in another stage; we then use the terminology "compensation in
stage x in response to stage y" to méan that the rate of some process (development,
survival or reproduction) for individuals in stage x is affected by the population

density of individuals in stage y.

Because of density dependent factors, we do not in general expect the
addition of new density independent mortality (such as that imposed on immatures
by SONGS) to drive fish populations extinct. Eventually, as a result of the lowered
density of either immatures or adults, the remaining individuals (either immatures
or adults) can be expected to do better: either the birth rate will increase or the
death rate from causes other than SONGS will decrease sufficiently for the

population to persist.

However, the average population abundance is likely to decrease. Sardines,

white seabass, barracuda, yellowtail, Pacific mackerel, and pelagic sharks are all




California marine fish species that have declined in the face of additional man-
imposed mortality, in spite of the probable presence of compensation (CalCOFI
1983). In particular, an increase in the death rate of immatures, such as is caused by
SONGS, can be expected to lower the average (or equilibrium) abundance around

which the adult population fluctuates.

- The remaining two sections of the report are an attempt to justify these
assertions and quantify some of them. We do not have the appropriate data to test
for compensation in the species potentially affected by SONGS, so we are forced to
rely on indirect arguments. In Section 2 we assess the evidence for compensation in
three species of marine fish amassed in a recent review, and establish candidate

mechanisms through which compensation might operate for fish affected by

SONGS. In Section 3, with the aid of a suite of very simple mathematical models,

we examine the likely effect of SONGS-induced mortality and compensation on the
average abundance of hypothetical fish species in which compensation operates

through those mechanisms identified in Section 2.
2. EVIDENCE FOR COMPENSATION IN MARINE FISH

The most reéent and thorough review of evidence concerning compensation
is presented by Saila et al (1987). We have examined evidence in that review
relating to three species of marine fish, to see where and how compensation might
operate in the life history. The review, several of the original data papers, and the

ecological literature in general, form the basis for our discussion.




Below, the numbers in parenthesis refer to pages in chapter 3 volume 1 of

the review by Saila ef al.

Of the 13 species considered by Saila et al., only three spend all of their lives
(including the egg and larval stages) entirely in the ocean: Pacific herring, northern
anchovy and Atlantic cod. A fraction of the early stages of a fourth, mainly marine,
species (winter flounder) is found in estuaries and rivers. The remainder are either
freshwater or anadromous species. Since the species of interest at SONGS are

entirely marine, we concentrate on the results for herring, anchovy and cod.

Saila et al. (1987) concluded that compensation occurs in both the adult and
immature stages of fish in general. They concluded there was compensation in the
adults of all three purely marine species, although the evidence is weak for herring.
They also argued that there was compensation in the immature stages of cod and
anchovy. Overall, they concluded there was only weak evidence for density
dependence in herring, perhaps occurring via reproduction, and that the populations
are very sensitive to increased negative impacts (12 et seq.). For anchovy they
concluded that cannibalism [of immatures] "is clearly density dependent," and
speculated that predation upon the eggs and larvae (27, 28), fecundity, immature |
growth and starvation, and fishing on the adults (28) may be important density
dependeﬁt factors. In cod (35 et seq.), adult growth has been shown to be density
dependent. There is also evidence for earlier maturation at lower adult densities,
and density dependent fecundity. They conclude that "density dependent
mechanisms determining recruitment in species such as cod must be taking place at

the juvenile and late juvenile stages" (42).




We agree with Saila et al., that there is adequate evidence for compensation

by the adults of these species.

However, we disagree about the adequacy of the evidence for compensation
by the immature stages, mainly because we differ concerning what we can take for
granted a priori. We shall argue that there is no convincing evidence for immature
compensation in their three marine species, and further that there are a priori
grounds for suspecting that compensation in the immature stages may be absent or

weak.

We do not claim that there is no compensation in immatures; there may be.
Our point is, rather, to illustrate how little is known about these processes and how
little can safely be assumed. In fact, in Section 3 we examine the probable

consequences of compensation by immatures as well as by adults.
2.1 Compensation in Immature Fish

Saila et al’s reasons for concluding that the immatures of the three marine
species compensate are both general and particular. The general arguments
amount to a claim that food, predation and cannibalism may be expected a priori to
affect the immatures in a density dependent way, and that reductions in the density

of immatures will lead to:

(1) increases in their food intake and hence increases in their growth rate

and survival, and




(2) decreases in the predation and cannibalism rates.

Claim (1): increase in food. Our rejection of this claim is based on the
known dyﬁamics of feeding in relation to food supply. Saila et al appear not to
accept, or to be uncertain of the validity of, the broad generalization that the rate of
intake of food depends primarily on the density of the food, and not directly on the
instantaneous number of individuals searching for the food. [Even where
interference amoilg individuals may influence feeding rates, this effect is likely to be
insignificant in comparison with the effect of variations in food density (see Crowley

et al. 1986 for a sample calculation).

We believe, on the basis of extensive existing ecological studies of feeding
behavior in many different organisms, that the rate of intake of food, for an
organism of a given physiological state, is determined by the rate of encounter with
potential food items and hence by the density of food (Peters 1983). In other words,
the amount of food consumed by an individual depends on how much food it
encounters, and this depends almost entirely on how much food is in the
environment and hardly at all on how much time the individual wastes in encounters
with other individuals. Thus, if the supply of food in the habitat is constant, then the
amount consumed by any individual will not be increased by removing other
individuals from the habitat, unless these removed individuals were causing a

reduction in the amount of food in the habitat.

An opposing view has been expressed (Arditi and Ginsburg 1989), but we

disagree with some of the theoretical arguments and note that the evidence offered
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in support applies only to rather special systems which are very different from fish in

the open ocean.

It follows that a reduction in the density of immature fish, owing to intake
mortality in a power plant, will lead tb an increase in the rate of intake of food by the
remaining immatures only if the density of food particles increases. This will occur only
if (i) food density had previously been supéressed by the immatures, and (ii) the release

from this suppression is not cancelled by the introduction of another source of food

suppression.

It is possible for these conditions to be satisfied. But for the species
considered by Saila et al., the food particles come from such a variety of sources and
are eaten by such a variety of species that the burden of proof seems to rest with
those who argue that the affected fish species had been suppressing the food supply.
In addition, condition‘ (ii) will be violated if SONGS removes the food of the

immatures in about the same proportion as the immatures themselves.

We turn now from these general arguments to the evidence on
compensation, via the feeding response of immatures, of the three purely marine

fish species reviewed.

Saila et al. provide no evidence that immatures of the species in question
suppress their food supply. Evidence that the food supply may often be below that
required for immature development does not demonstrate that the immatures

themselves suppress‘ their food supply: there are many possible reasons for this



suppression. There is no evidence for herring or anchovy; indeed MacCall (1980)

argued that such suppression might not occur in anchovy even at a local scale.

Nor does the review provide evidence that the growth rate or survivorship of
the immatures of any of the three species increases as their own density declines. In
the cod, Saila et al. concluded there was little or no evidence for density dependent
growth in the first year of life. There is some evfdence for density dependent
decrease in age at maturity - apparently.over several to many decades (36). This
does not reflect an increase in immature growth rate, however, but rather

maturation at a smaller size.

The absence of a change in growth rate is important, since Saila et al suggest

‘that faster maturation at lower immature density may cause a density dependent

reduction in losses to predators - because the fish escépe more quickly the higher
predation rates associated with immaturity. However, predation rates are likely to
be related to maturity only because mature fish are bigger; i.e., it is size, not sexual
maturity, that determines vulnerability to predation, so only an increase in immature
growth rate is likely to lead to reduced predation. In sum, there seems to be no

good evidence for density dependence acting on immatures via the food supply.

(We note that earlier maturation can have a compensatory effect even when
there is no change in growth rate. If there are no other changes, earlier maturation
implies a greater probability of reaching the reproductive stage, and a longer period
in this stage, for each individual. However, it is most unlikely that there will be no
other changes. Earlier maturation is likely to lead to smaller adults, since a period

previously devoted to growth is now devoted to reproduction. This is likely to lead
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to reductions in survival, fecundity (e.g., the number of eggs an individual can
produce) and biomass. This is a very complicated set of possibilities, not suggested
by Saila et al., difficult to model and, we feel, unlikely to lead to a significant

increase in population size or biomass. We therefore do not consider it further.)

Claim (2): Predation and Cannibalism. Saila et al’s claims that these
processes are density dependent rest mainly on an assertion that this is true in

general.

There is, however, an enormous literature on predation. In our view, thé
weight of that body of evidence points to the short-term effects of predation (i.e., the
response of individual predators) as typically either density independent or even
inversely density dependent (see Murdoch and Bence (1987) for a review). Inverse

density dependence would lead to depensatory (the opposite of compensatory)

‘mortality, i.e., mortality rates would increase as the population decreased.

The long-term effect of predation may be compensatory. As their food
supply decreases, the number of predators may decline, thus decreasing the
predation pressure. However, although very little is known about predation on
immature fish, it seems unlikely that any predator population depends heavily on
this source of food: for most predators, immature fish are probably not particularly
different from any other planktonic material. Thus we would not expect a
significant decline in the predators of immatures in response to increased losses

caused by SONGS.
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The situation with cannibalism is more complex. The predatory behavior of
individual cannibals (larger immatures) feeding on their own species presumably
obeys similar rules to predation: the short-term ("functional") response of predators
is typically a "type 2," which causes depensatory mortality because of satiation or
handling time effects; this is typically the case even when the predator feeds on
several species. However, we can expect a longer-term density dependent feedback
process to operate since losses of immatures to SONGS that are not compensated

for should lead to fewer cannibals, which in turn will reduce the cannibalism rate on

~ smaller immatures. We explore this effect with the aid of a model in Section 3.

Turning to the evidence specific to the three purely marine species, we were
not able to find reliable evidence for density dependent predation or cannibalism.‘
Saila et al. make no claim of finding density dependence in herring. In the case of
the anchovy, the paper confuses temporal density dependence and spatial density
dependence. Temporal density dependence occurs when an overall rate (of death,
birth, growth, etc.) varies with the density of the population as a whole. It leads to
compensaﬁoﬁ. Spatial density dependence occurs when the population is patchily
distributed, and rates in dense areas are different from rates in sparse areas. This is
as likely to cause depensation as compensation - see Murdoch and Stewart-Oaten
(1989). At least ohe piece of evidence presented on anchovy shows predation to be
depensatory (23), and the remaining evidence (24) does not specify whether the
number or the fraction of larvae eaten increased with their density (only the latter
implies density dependence). Saila et al. state that predation upon immature cod is
believed to be the most important density dependent mechanism controlling year-

class strength (38), but no evidence is presented.

12



One form of compensation is potentially particularly important because it -

could completely nullify the SONGS effect or even lead to an increase in the adult
popﬁlation. This is where the compensation acts in a late stage in response to a

| decrease in an earlier stage. It can arise in more than one way, but a simple
mechanism is the "constant yield" condition. The hypothesis here is that there is a
bottleneck at the late juvenile stage, so that, over a wide range of larval densities, a
more or less constant number passes through the late juvenile stage to adulthood,
regardless of the number entering the stage. This could occur, for example, if there
were a fixed number of refuges or territories for late juveniles. There is no evidence
for this type of compensation in the three species under discussion, and nothing in
the biology of the species of concern at SONGS indicates that this mechanism could

be operating.
2.2 Compensation by Adult Fish

There is evidence for density dependent growth of adults in some herring
populations but not in others (13, 14). Density dependent adult growth has also
been found in both the anchovy (20) and cod (35). This can be expected to lead to
density dependent fecundity, which has been separately observed in anchovy (21, 22)
but has not been well-established in cod, except via increased growth (37).

There is no evidence for increased adult survival at lower stock sizes in the
three species studied. The relationship between adult survival and adult density is
notoriously difficult to estimate, however, and it is possible that there might be such
a fesponse to ‘increased'food intake. On the other hand, McCall (pers. éomm.)

suggests that at least one source of adult mortality is likely to be depensatory:

13




marine birds and mammals that feed on adult fish are such information-rich feeders
that they are likely to take a constant amount of food over a very wide range of fish
densities. (He notes that in this sense these predators are analvogouSNto modern
information-rich fishing that uses technology such as sonar and aerial surveys to

achieve similar constant yields regardless of fish density.)

If the loss of immatures leads to .a decrease in recruitment to the adult
population, this may have an effect on the predators of the adults. However, this
may make the effect of SONGS more serious, by transferring it from fodder fish to
sport and commercial species. We discuss this as "Case 4" in our set of models in

Section 3.

These results suggest that adult cod and anchovy populations, and some
herring populations, were indeed suppressing their food supply, which presumably
increased in response to reduced adult abundance. Overall, there seems to be quite
good evidence for density dependent growth and fecundity in adult‘marine fish,

while effects on survival are still unknown.
23 Summary

In summary, there seems to be adequate evidence in wholly marine species
for various compensation mechanisms involving a response to adult density. These
include density dependent growth, fecundity and tifne-to-méturation, and possibly
survival, that depend on adult density. The fraction of immatures cannibalized may
also increase with increasihg adult density, though there does not seem to be good

evidence for this. The evidence is at best weak that immature stages (larval or
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juvenile) compensate for reductions in immature density, for example by faster

growth or higher survival.

3. CONSEQUENCES OF IMMATURE MORTALITY
UPON FISH STOCKS ‘

In this section, we use simple models of fish populations to evaluate how a
SONGS-induced increase in immature mortality might affect the average density of
adult fish. Two types of fish are killed as immatures by SONGS. One is "fodder
fish" (e.g., queenfish), which are important mainly as food for the other type, namely
piscivorous sport and/or commercial species. Compensation can affect these two

types of fish differently.
3.1 Aims of the Models

Ideally, we would like to write detailed models of the dynamics of the fish
populations in the Bight, based upon extensive information about the real
populations. The information required to develop such models would include, for
example, fecundity, development rate, and death rate for each age class, annual
variation in these rates, and any dependence on density. Such information is not
available for any of the species of concern, and believable, detailed models are thus
out of the question. We therefore use the simplest models that incorporate what we

regard as the essential features of fish life history.

The models are intended to provide a more rigorous guide than mere

intuition to the likely consequences, for adult stocks, of various pbssible forms of




compensation. By making assumptions explicit they also allqw the reader to judge
whether they are acceptable. They do not aim to be realistic portrayals of the
detailed dynamics of any particular fish populations, nor are they intended to
provide a precise measure of potential changes in stock size. They recognize only
two classes of each fish species: immatures and adults; they are deterministic; they
do not recognize spatial variation; and they look only at effects on numbers, not on

biomass.
Three conclusions are reached:

(1) Most forms of compensation examined fail to prevent a decline in
adult stock in response to SONGS-induced mortality of immatures; the fractional
decline might plausibly be about the same size as the proportion of immatures killed
by SONGS. |

(2) The adult population is unlikely to be destabilized by the action of
SONGS. The most important exception to this generalization is the situation (which
we believe rare) where there is sufficient compensation in the late juvenile stage
(i.e., after SONGS impact but before maturity) to prevent an appreciable fractional
decline in adult stock. |

(3)  The most likely effect of entrainment of immatures of a "fodder” fish
that is eaten by sport/commercial species is a reduction in the equilibrium adult
abundances of the latter, with only a small change in the abundance of the fodder

fish.

16




3.2. Compensation Mechanisms Modelled

Following Section 2 we recognize only two stages in the models below:

adults and immatures.

Adults can compensate by increased survival, growth or fecundity. Since our
discussion focuses on individuals, not biomass, we do not discuss growth per se:
compensation by increased size becomes an implicit part of our discussion of
coinpensation by increased survival or fecundity. Adult compensation will be in
response to the density of adults only, since immature individuals do not compete

with adults or prey on them.

Immatures can compensaté by increased survival or reduced time to
maturation. As discussed above, an adequate model of reduced time to maturation
involves too many complexities and too much species-specific detail, compared to its
likely importance, for it to be modelled here. However, we do consider immature
compensation in response to the density of immatures (e.g., via decreased food

suppression) and to the density of adults (e.g., via decreased cannibalism). -

Guided by section 2, we have classified the major potential mechanisms as

| follows:

Case 1. Responses by adults.
(a)  Adults experience higher fecundity at lower adult density.

(b)  Adult survival may increase when there are fewer adults.

17




Case 2. Response by immatures to adult density.

(a) Cannibalism of immatures by adults decreases as adult density
decreases.

(b)  Survival of immatures is higher at lower adult density (e.g., each egg

may be larger).

Case 3. Response by immatures to immature density.
- (a)  Planktonic and juvenile stages survive better at lower densities.
(b) SONGS-induced mortality on late juveniles is so small it can be
ignored, and late juveniles survive better at lower densities.
(c) Cannibalism of planktonic stages by juveniles decreases as juvenile

density decreases.

Case 4. Predation by other species.
(a) The affected species is a major prey item for a predator (e.g., a

sport/commercial) species.

Cases 1(a), 2 and 3(c) cover the mechanisms that emerged from Section 2 as
the prime candidate mechanisms for compensation. That section gave little support
for compensation via increased adult survival, and none for compensation via
increased immature survival in response to reduced immature density, but in view of
the inadequacy of the evidence, we have included some discussion of these
mechanisms (cases 1(b) and 3). Case 4 was not covered in Section 2, but in view of
our knowledge that SONGS entrains fodder fish, this -aspect clearly merits
investigation. The only candidate mechanism not modelled is dependence of time

to maturity on adult density, for reasons given above.
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Case 2 will not be separately modelled below. Although it gives responses by
immature stages, it is covered by the increased fecundity of adults, Case 1(a): we
merely reinterpret "immatures" to mean juveniles only, and "fecundity" as the ability

to produce new juveniles rather than eggs or plankton.
3.3. A "Single-Species" Model and its General Properties

In our investigation of most of the forms of compensation, we make extensive
use of one particular, "single-species” modei. To avoid excessive repetition we now
state the model, and establish some of its general mathematical properties, in
particular equations for equilibria and conditions for stability of these equilibria.
(We include some of the algebra, so interested readers can check the results.) The
only cases identified in section 3.2 that cannot be discussed using this model are case
3(c) (Cannibalism) and case 4 (Predation by other species). Models for these cases

will be proposed at the point in the text where they are required.

The model recognizes that although there are three stages (adult, planktonic
and juvenile) we need only explicitly represent two: adults and immatures.

Depending upon the mechanisms we wish to investigate, the immatures can include

both the planktonic and juvenile stages, or only the latter. We assume that

reproduction occurs in a short period each year and produces a distinct cohort of
immatures. An appropriate discrete-time formulation for fish populations consisting
of a juvenile stage lasting one year and an adult stage is then:
I, bf(Ad)A, 1)
Asr Sg(I)I; + Sah(A)A. | | )

where

19




I, = density of immatures at time t,
A = density of adults at time t,
b = maximum number of "births" per adult, where a "birth" is an

egg that hatches and survives through the planktonic stage to
become a juvenile (except in case 3(a), where it is a newl

hatched planktonic larva); :
f(A) = ratio of per capita birth rate when the adult density is A to
the maximum rate;
S = S, maximum survival of immatures at low immatures density;
g) = ratio of immature survival when immature density is I, to
maximum immature survival:
Sa = maximum year to year survival of adult fish;
h(A) = ratio of adult survival when adult density is A; to maximum -

adult survival:

SONGS affects b and S. Compensation occurs through f, g and h, We
assume these are non-increasing functions, with at least one of them being strictly
decreasing, so a SONGS-induced decrease in adults or juveniles will lead to
increased (or, at least, not decreased) fertility or survival. Thus f(0) = g(0) = h(0)
=1, (It' is possible that, in real life, one of these functions actually increases over
some range, e.g., the Allee effect, but this would make the effect of SONGS even

worse.)

Note that the left side of equ(1) is I;, not I;+1. For example, the birth process
(including hatching and survival through the planktonic stage) could take from April
1 to May 1; the juvenile stage could last until the following March 31, when surviving
juveniles would become full adults, and contribute to the next set of births. A,
would be the number of adults oﬁ April 1, and I; the number of juveniles on May 1,

of year t.

20




I; can therefore be eliminated from the model equations. The numbers of

adults in successive years are related by

Aii = F(ADS)A: \ _/ 3
where

F(Ab,S) = Sbf(A)g(bAf(A)) ; Sah(A). | 4)
The equilibrium population satisfies

F(A')b,S) = 1. | | ®)

" Once this is solved for A*, the immature density is given by

I' = bA'f(A).

‘Equs (4) and (5) express the fact that the average lifetime production of each
adult, bf(A)/[1 - Sah(A)], should be the number of juveniles réquired to produce
one adult to replace itself, 1/[Sg(I)].

An equilibrium is of little relevance unless it is locally stable, i.e., following a |
small perturbation, the stock returns to its pfevious level. If a, = A, - A" is the small

deviation in year t, then
a1 = a{A'[9F/0A] + 1},

using equation (5) and Taylor Series vexpansion of the right side of equ (3).
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(Note: all derivatives in this report afe evaluated at (A‘,b,S), i.e., the pre-
SONGS equilibrium and values of b and S.)
The value
z = A'[dF/3A] + 1 (6)

is the "eigenvalue” of the system. It determines whether, after a small perturbation,

the system oscillates (z < 0) or changes monotonically (z > 0) and also whether it

‘returns to equilibrium (|z| < 1) or not (|z] > 1). We will see below that, provided

there are no depensatory mechanisms (i.e., provided f, g and h are all non-
increasing, so that increased populations cannot have increased fertility or survival),
z must be less than 1. In other words, monotonic divergence from equilibrium is not
possible in this model. The population can be unstable only if it "overcompensates”,
ie., if compensation is so strong that A is further above (or below) the

equilibrium than A, was below (or above) it.
From equ (6), z = 3(AF)/dA. WritingI” = bA'f(A”), we get

= Sbf(A*)g(I")PQ + Sah(A)R

= (1- Sah(A"))PQ + Sah(A"R, (7
using equ (5), where |
P=1+Af"(A")/f(A") ®)
Q=1+Ig@)/gl) )
R =1+ A" (A%)/h(A" (10)
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Note that if £, g’ and h’ are all non-positive, then P, Q and R are all < 1;

since Sah(A) = fraction surviving must be < 1, we get z < (1 - Sah(A)) + Sah(A) =

1, as claimed above. The inequality will be strict if at least one of f', g’ and h’ is -

strictly negative.

We will measure the sensitivity of the equilibrium value, A’, to SONGS-
induced changes in S, by asking whether a given small fractional change in S leads to
a smaller, larger or equal fractional change in A*. More precisely, if a change of §S
in S (= a fractional change of §S/S) causes a change of §A"in A” (other parameters

being unchanged), then the sensitivity of A* to change in Sis

os = [§A"/A"]/[8S/S].

Frbm equ (5) and the rules for partial differentiation we have
os = -S[aF/aS]/(A’[dF/aA))
by Taylor Series expansion. From equs (4), (5) and (6), we get

os = {1-Sah(A")}/(1-2). : (11)

We define the sensitivity of A’ to changes in b similarly: o0, =
[§A"/A"]/[6b/b] if a small change &b in b causes a small change §A*in A", We

then get

oy = -b[dF/3b]/(A[9F/3A])

i

Qos. (12)
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Since z < 1, equ (11) shows that os > 0; thus the change in A;‘ will be in the
same direction as the change in S; in particular, a reduction in juvenile survival will
lead to a reduction in the equilibﬁum adult population. If Q > 0, the same holds
for the fertility, i.e., 0 > 0 so a reduction in b leads to a reduction in A’. However,
it is possible that Q < 0, so the number of juveniles surviving to adulthobd, Sg(I),
actually increases when the number of entering juveniles decreases; a decrease in b

could then lead to an increase in A*. This is discussed in Case 3(b) below.

A sensitivity index greater than one implies (for a stable population) that the
relative decline in adult stock due to S;ONGS will exceed in magnitude the relative
change in b or S. That is, the drop in adult stock will exceed the adult equivalent loss
(AEL).

Equations (11) and (12) show that the questions of the impact of SONGS on
equilibrium densities and on stability (via z) are not independent. If two
populations have the same valué of 1- Sah(A") but different values of z (because b,
S, f or g is different), then the population with the smaller value of z will be less

sensitive to a SONGS-induced change in S, i.e., its equﬂibrium value will change

less. waever, if z < -1, this advantage has little meaning since the equilibrium will

be unstable.

In the following section, we look at some special cases of the model, usually
cases in which only one of f, g and h is not constant. Our main interest is in the'
sensitivity and stability. But the sensitivity indices defined in equations (11) and
(12) are strictly valid only for "small" changes in b or S. The practical limitations on

what can be regarded as "small" depends on the forms assumed for the functions f, g,
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and h; in general'the smoother these functions, the larger the range of validity of
predictions bésed on the sensitivity indices. To complement our analysis of stability
and sénsitivity indices, we shall make one calculation which does take explicit
account of nonlinearities: for most of our models we shall attempt to answer the

question, "By what fraction must b and/or S be reduced to cause extinction?".
3.4 Predicted Consequences of Immature Mortality
Case 1(a). In this model, "immature" is taken to mean "juvenile" and "birth" means

recruitment to the juvenile population, so that fecundity includes the survival of eggs

and planktonic larvae. We assume there is no density dependence in either juvenile

or adult survival, so the functions g(I;) and h(A,) are both identically one. The

population then compensates only via f(A), i.e., through an increase in fecundity
and/or planktonic survival in response to a decrease in adult density. The dynamic
consequences are the same, regardless of whether it is adult fecundity or planktonic
survival that is density dependent. |

Since g = h = 1 for all A, we have

F(A,b,S) = bSf(A) + Sa. | (13)

The adult equilibrium density is obtained by solving equ (5):
f(A*) = (1-Sa)/bS, (14)

the eigenvalue determining local stability (equ (7)) is




z =1+ bSA’f’'(A"), (15)
and the equilibrium sensitivity indices (equs (11) and (12)) are

0os = obv = f(A")/[A’f (A")). ) (16)

SONGS kills both planktonic stages and juveniles, so its effect in this model
is to reduce both b and S. Equation (14) now tells us two general consequences of

this reduction, valid provided only that f(A) is a decreasing function of A:

1. f(A") increases, implying that A*, the adult population, decreases.
This agrees with our general remarks earlier: the sensitivity indices are positive, so

decreases in survival or fertility lead to reduced populations.

2, The popuiation will go extinct if SONGS reduces bS to 1 - Sa or less,
i.e., by a factor of (bS + S, - 1)/bS or more, regardless of the specific functional
form for f(A); the most vulnerable populations are those for which this threshold
factor is small, e.g., those which are barely viable (bS + Sa barely greater than 1).

3. The sensitivity index is less than 1 only if I[Af(A)]/dA < 0; thus the
fractional change in the equilibrium value is less than the fractional change in bS
only if there is very strong density dependence: under pre-SONGS conditions, if the
number of adults increases from A” to a value slightly above it, the number of new

immatures must actually decrease.
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Further quantitative predictions require specification of the function f(A).
Unfortunately virtually nothing is known about this function for any of the species
affected by SONGS, though we presume that it should decrease from 1to 0 as A
increases from 0 to . The "local" properties (eigenvalue and sensitivity index)
involve knowledge of the quantity f(A')/ [A'f’(A")] whose value can vary greatly
among functions which satisfy our broad general conditions for a compensation
function. However if we make the not implausible conjecture that the function f(A)
is convex (i.e., the straight line between any two points on its graph will lie above the
graph) then -Af’(A) has a value between 1 - f(A) and 0 and varies slowly. Thus the
sensitivity index will be greater than 1 (and potentially very large) if f(A") is near 1,
i.e., if (1 - Sa) and bS are approxiinately equal, so the population is barely viable. If
A is large and f(A) small, f(A) should behave like cA= for some constants ¢ and n;
then os = -f(A")/[A’F" (A")] is approximately 1/n. The fractional decrease in A" is
smaller than the corresponding decrease in bS if n is large (strong compensation)
and larger if n is small. The borderline case, n = 1, occurs when total recmitment is

approﬁmately constant, independent of the size of the adult stock.

However there is a further problem: if n > 1, there is the possibility of
instability: equations (14) and (15) give z = 1 - n(1 - Sa), so the system is unstable if
n > 2/(1-S8a).

The most "optimistic" assumption concerning the function f is that it is
sigmoidal in form: only slight compensation at small values of A, but strong
compensation (perhaps reflecting pressure on resources) at A’. In this case a small
value of f(A*) and a large (absolute) value of A’f’(A") (possibly larger than 1 -

f(A)) may combine to give a sehsitivity index less than one. However if the slope
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f’(A*) becomes very large and negative (specifically, f’ (A% < -2/bSA”, see equ
(15)), the equilibrium is unstable due to overcompensation. There is no evidence
suggesting that any of the species potentially impacted by SONGS are fluctuating
around an unstable equilibrium, and it thus appears that while a sigmoidal
compensation function may through good fortune minimize the impact on some

species with appropriate parameters, it is unsafe to rely on this mechanism.

An instructive example that illustrates these points is obtained by recasting
the well-known Beverton-Holt stock-recruitment relation and assuming

f(A) = 1/(1 + A/Ay). Beverton-Holt (17)

This form gives a stock-recruitment curve in which an increase in the adult
population always leads to an increase in total recruitment, but there are
diminishing returns: the recruitment increase becomes vanishingly small at high
adult densities, so that bAf(A), the total recruitment to the juvenile population, is
essentially bA,, independent of stock, at these densities. At equilibrium, the adult
population density is (equ (14))

A" = Ay [bS/(1-Sa) - 1). Beverton-Holt (18)

whose sensitivity to changes in b or S is (equ (16))

0s = Op = bS/[bS - (1-Sa)]

Thus if SONGS reduces b or S by a small fraction y (i.e., to (1 -y) S or
(1 -y) b), the fractional reduction in A’ will be greater than y.

A generalization of the Beverton-Holt form is




| 1
[
P
I
1
1
I
|
I

f(A) = 1/[1 + (A/Aoy]. 9

As for eqn (17), f(0) = 1 and f(Ay) = 0.5. If n > 0, per capita birth rates
decrease as A increases; if 0 < n < 1, total recruitment increases without limit as A
increases; n = 1 is the standard Beverton-Holt model; if n > 1, total recruitment
peaks when A = Ag/(n - 1)/a, and then declines, so that high stock levels lead to

low recruitment. This choice of f gives (equ (14))

A’ = A{bS/(1-Sn) - 1}1/5, | (20)
the eigenvalue is (equ (15))

z=1- n(1-sA)[i - (1-S4) /bS], 4 - (21)
and the sensitivity indices (equ (16)) are given by

0s = Op = mr1bS/[bS - (1-Sa)]. (22)

Equ. (21) shows that, although it is difficult to derive necessary and sufficient
conditions for stability for a general function f, with this (rather broad) family of
generalized Beverton-Holt functions @ SONGS-induced reduction in the product bS
will ‘always enhance the stability of the system (by increasing z). Note that if n is

large, z can be < -1, and the system unstable.
Equ. (22) tells us that the equilibrium sensitivity indices are always greater than

one unless n > I, i.e., the percentage reduction in population is greater than the

percentage reduction in bS unless compensation is stronger than the standard
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Beverton-Holt form. In the case n > 1, no general comment is possible, as the
sensitivity indices may take values greater or less than one depending on the precise

values taken by b, S, and Sa.

Note that equs (21) and (22) combine to give z = 1- (1 - Sa)/0, where ¢ '=

os or 0p. Thus increasing n to reduce o will eventually lead to z < -1 and instability.

1t is possible to develop similar arguments with countless families of
functions, and furthermore to genefalize the above results to the situation where the
developmental time is greater than one year (see e.g., models in Bergh and Getz
1988, Getz and Haight 1989), but we are aware of no examples that contradict our
main conclusions for this model, namely that unless there is overcompensation,
SONGS will produce a reduction in adult stock at least as large as the reduction in

bS and an increase in stability.

Case 1(b). In this case, h(A) is the only function not identically equal to one.
We have

F(A"b,S) = bS + Sah(A"). o (23)
The equilibrium is given by
h(A®) = [1 - bS]/Sa, (24)

and exists only if bS < 1 < bS + Sa. The first of these inequalities reflects the fact
that adult mortality (i.e., mortality after the year of growth from egg to adult)

cannot control the population if each adult produces more than one replacement in
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its first year; the population will then grow without limit. The second inequality is
simply the requirement that at low densities (where h(A) is approximately one) the

population should be viable: on average, the new population each year will consist

~ of a fraction Sa of the adults of the old population plus bS new adults for each adult

in the old population. Where there is an equilibrium, the eigenvalue z determining

its stability is given by (equ (6))
z=1+ SaA’h’(A"), (25)
and the equilibrium sensitivity indices (equs (11) and (12)) are

0s = 0p = -bS/(SaA'h’(A"). (26)

Further discussion requires assumptions about the function h(A). If, as
seems plausible, this funcfion is convex, it turns out that the eigenvalue must lie in
the range (2 - bS - Sa,1), implying exponential stability (i.e., a steady return to
equilibrium), and that '

0s = 0y > bS/Sa(1-h(A")) = bS/(bS + Sa-1) > 1, (27

implying that the percentage decrease in adult stock will be more than that in b
and/or S.

If h is sigmoidal, as might happen if density dependence is weak until the
population grows large enough to strain resources, it is possible that -A’h’(AY > 1
-h(A"), so that ds and oy, are smaller than 1, implying a smaller fractional change in
A® than in bS. Butif -A"h’(A") > 2/Sa, the equilibrium will be unstable because of

overcompensation.

31



Case 3. For cases 3(a) and 3(b), f = h = 1, so compensation acts ihrough

juvenile survivorship, g(I) = g(bA:). Thus we have

F(A,b,S) = bSg(bA) + Sa, ) A (28)
so the equilibrium is given by
g(bA®) = (1-Sa)/bS, (29)

and the stability is determined by

z =1+ b2SA’g’ (bA"). (30)

In both cases, if bS is decreased to 1 - S, by a decrease in either S or b, the
population goes extinct; and the equilibrium is stable in both cases if g’(bA') > -
2/b2SA". The cases differ in other respects.

The remaining case, 3(c), requires a new model, since it involves two juvenile

stages occurring simultaneously.

Case 3(a). SONGS affects only S. For this analysis we lump together the
planktonic and juvenile stages in the immature population (still denoted by I;). The

- parameter b now refers to the (fixed) number of eggs produced per adult. Since b

is fixed, oy is ignored. The other sensitivity index (equ (11)) is

os = -g(bA")/[bA"g’ (bA")]. €2Y)
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Equations (28) to (31) are very similar to equs (13) to (16), and’ much of the
discussion of our Case 1(a) applies here. In particular, a reduction in S implies an
increase in g(bA"); this implies a decrease in A’ since g is a decreasing function and
b is fixed. Thus, even though immature survival increases in response to SONGS éﬁects
on the immatures, fewer individuals recruit to the adult population, and hence average
adult population is reduced.

Also, the previous points 2 and 3 are the same: the same fractional reduction.
in bS (in this case, in survival, S) will bring extinction, and the sensitivity will be > 1
(so the fractional change in A* will be greater than that in S), unless a decrease in
new juveniles (I) would lead to an increase in new adults (Ai+1 = ISg(ly)) at

equilibrium under pre-SONGS conditions.

The Beverton-Holt form and its generalization are also reasonable here, with
g) = 1/(1 + (I/L)"); replacing I and Io by bA and bAo shows that we get exactly

the same conclusions.

Case 3(b): We assume that the late juveniles suffer ‘no mortality from
SONGS, as an extreme case of very low mortality on this age group. We further -
assume however that SONGS does increase mortality on previous immature stages.
The parameter affected by SONGS is now b, which in this model represents the
number of "births" per adult into the late juvenile age class (L), and is affected via
mortality on all immatures up to the late juvenile stage; S, the maximum survival at
low density, is assumed unaffected by SONGS because this stage( is assumed to have

negligible SONGS-induced mortality. Compensation again acts through g(I).
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Thus we again have equs (28) to (30): the same equilibrium value, and the
same fractional change in bS (in this case, in fertility and early survival, b) will lead

to extinction.

But now it is S which is fixed, so os is ignored, and

o = -1-g(bA")/[bA’g’ (bA")]. (32)

If compensation is strong enough (i.e., if g’ is large enough) o, can be
negative, implying that a small decrease in b can lead to an actual increase in the

equilibrium population A",

| Mathematically, thé key difference between this case and Case 3(a) is that
the parameter affected by SONGS is b and not S. A decrease in b implies an
increase in g(bA") and thus a decrease in bA*; but this no longer implies a

. . *
proportionate decrease in A, or even a decrease at all.

Biologically, the difference between this case and all the others is that
compensation can operate even when there is no reduction in later stages. In Cases
1 and 2, compensation responds to a decrease in adults; it cannot prevent a
decrease, since it cannot operate until some decrease has occurred. In Case 3(a)
both SONGS and the compensation work throﬁgh the same parameter: if SONGS
is to cause any reduction, it must reduce the numbers in a stage following the stage
on which compensation operates. Thus, although the compensation is responding to
a decrease in I, this decrease is itself a consequence of the decrease in A caused by

SONGS: as before, if there were no adult decrease; there could be no
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cbmpensation. In the present case, the SONGS effect is to reduce the number of
recruits to the immature stage; and it is to this reduction, rather than to a
subsequent reduction in adults, that compensation responds by increasing the
number of individuals "graduating” from this stage. In fact, it is easy to see that this
effect can occur even if SONGS reduces S, provided that compensation can be
strong enough to more than counter this reduction. The necessary condition is that
the survival of a late stage can increase as a result of a reduction in an earlier, pre-

adult stage.

A consequence of equation (32) is that if g(I) varies as cI™ for a range of I in
the vicinity of the equilibrium, g(bA')/[bA'g’(bA*)] = -1/n so a sensitivity index
less than one is achieved if n > 0.5. There is no decrease at all if n = 1 (perfect
compensation, whereby the number of immatures emerging from the stage is the
same regardless of how many entered it, provided this is large enough for the "I"
behavior) and an actual increase in adult density is possible if n > 1. However, from
equ (30), we again get z = 1 - n(1 - Sa), so the system is unstable if n > 2/(1 - Sa),

i.e., if compensation is too strong.

The generalizéd Beverton-Holt model, (equ (19) with "g", "T", and "Io"
replacing "f", "A", and "Ao"), is also plausible here. We write E = (bS + Sa - 1)/bS;
when the population is low (no compensation), this is the "excess" fraction of new
adults beyond those needed to replace the adults who died. We thengetz = 1-n(1
-Sa)E and 0y = -1 + 1/En. Thus the sensitivity index is less than 1if nE > 0.5 and
is negative if nE > 1; but the system is unstable if nE > 2/(1 - Sa).
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Case 3(c). In this mechanism, small immatures are the victims of predation
by large immatures (e.g., planktonic stages eaten by juvenile fish). Our standard
model is not suitable for modelling this case, since this type of cannibalism requires
two stages to be present simultaneously; we must therefore abandon our discrete
time modelling framework. Some insight into the likely effects can be obtained from
a very crude model in which we assume "small" and "large" immature stages of
duration T; and T respectively and let the large individuals cannibalize the small

ones. We assume random searching and neglect any beneficial effect of cannibalism

" on the cannibals. The model then takes the form

dS(t)/dt = Rs(t) - Re(t) - cS(t)L(t) - dS(t) (33)
dL(t)/dt = Re(t) - Ra(t) - eL(t) | (34)
dA(t)/dt = Ra(t) - fA(t) (35)

in which d, e, and f represent density-independent death rates for the three stages,
the term c¢S(t)L(t) represents cannibalism, and Rs(t), Ri(t), and Ra(t) represent

recruitment rates to the three stages. We have:
Rs(t) = b A(t), (36)

i.e., a constant rate of production by the adults;

Ri(t) = Rs(t-Ty) exp { -| ( cL(x)+d)dx}, 37

t-Ty

i.e., the survivors of those who recruited to the small stage T; time units before; and
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Ra(t) = Ru(t-Tz) exp (-eT2), (38)

the survivors of those who recruited to the large stage T time units before. From
equs (34) - (38), the equilibrium adult density can be shown to be

A S [In (b/f) -dT1 -eT] (39)

~ fcTi[exp {eT>} - 1]

which decreases if either d, the death rate of small immatures, or e, the death rate of
large immatures, increases. Thus ’SONGS-'induced mortality on the immature
stages, no matter how apportioned, leads to a decrease in the adult population.
Sufficient mortality on either stage will lead to extinction. However, the sensitivity
indices describing the response to changes in d or e or both, depend on the other
parameters in the model, in a messy and unrevealing way. We remark that this
model may overestimate the compensatory effect of cannibalism, since it includes
the negative effects of cannibalism on the small larvae, but ignores the beneficial

effects on the large larvae.

Case 4. Here, the fish species that suffers SONGS-induced immature
mortality is a major food item for a predator (e.g., sport/commercial) species.
Again, our standard model is not suitable. Since the life cycles of fodder and
predator species are probably different, we model this situation in-a continuous-time

framework.

First, guided by Section 2, we assume that the compensatory mechanisms for

the fodder fish operate in response to adult density only. We also assume that the
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predatory (sport/commercial) fish species depends entirely upon the fodder fish for
food.

A standard type of model is
dA/dt = AF(A,b) - Pk(A) | (40)
dP/dt = cPk(A) - mP, - (41)

where A and P are respectively the densities of adult fodder fish and of predators.
The term k(A) is the "functional response" giving the number of prey killed per
predator per unit time. These prey are converted into new predators with efficiency
c. The term F(A,b) represents the per capita rate of increase (decrease if F is
negative) of the adult stock, as a fuﬁction of the stock size; b is the recruitment rate,
which may be affected by SONGS. Thus F plays a role similar to that in equ (3).
The SONGS effect is to reduce F by reducing b, which combines the roles previously

played by b and S. We assume the predator suffers a constant death rate, m.

We assume that, for given b, a reduction in A leads to an increase in F; thus
compensation will act if A is reduced. But from equation (41), the equilibrium
fodder fish population is given by k(A*) = m/c. Thus this population is completely
unaffected by the reduction in F caused by SONGS, so no compensatory mechanism

is brought into operation.

But the equilibrium population for the predator species is now given by

equation (40):
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P" = A'F(A"b)/k(A"). 42)

A SONGS-induced reduction in b will thus not affect A” but will cause a
reduction in the predator species. How large the reduction is depends on the role of
bin F. For example, if F(A",b) = bFy(A") - dFz(A"), i.e., growth rate = birth rate -
death rate, then a change 6éb in b leads to a change §P* = [dP"/db]éb in P’, so the
ratio of fractional changes is [§P"/P"]/[6b/b] = bFi(A")/[bFi(A") - dFA(A")] > 1,

i.e., the fractional change in P'is greater than that in b.

There are a priori reasons to doubt the realism of this simple model as it
excludes many factors, including some emphasized in the single species modelé.
Furthermore, it turns out that with many forms for the function F (or for F; or F»),
the equilibrium is Hkqu to be very unstable, with large amplitude cycles in both prey
and predator. However the result that the fodder fish density is set by attributes of
the predator is rather general and w111 hold provided there is no dependence on
predaior density of the predator death rate, the efficiency of converting prey into
new predators, and/or the functional response. It does however require that the
predator is a specialist, regulated exclusively by the availability of one particular

prey species.

Modification of the model to cover either of the above weaknesses is beyond
the scope of this report. However, it would seem plausible that relaxation of the
model assumptions will prevent the complete transfer of losses from the fodder to
the predator fish (cf. McCauley, Murdoch and Watson 1988 for a related study on

Daphnia and a heterogeneous algal food supply). The overall conclusions from the

39




model are thus rather weak; it suggests a "greater than one" sensitivity index, but
plausible modifications are likely to reduce this. It is thus possible that the fractional
predator fish losses will be less than the fractional change in fodder fish production
caused by SONGS; however acceptance that this is likely involves excessive faith in

pure theory backed by rather little experimental evidence.
3.4.1 Combinations of Compensatory Mechanisms

There may be more than one compensatory mechanism operating, and it is of
interest to know how they interact. The baseline model with all mechanisms
operating is very complex, its properties being summarized in equations (3)-(12).
We have made no attempt beyond the discussion around these equations to
interpret these general formulae; however it is of interest to study the combined

effects of two of the most likely of the mechanisms studied.

We assume that there is no density dependence in adult mortality (i.e., h(A)

= 1) and that the equilibrium population occurs in a region of the curves f(A) and

g(I) where
f(A) = cAn (43)
~and
g(l) = dI™. (44)
for constants ¢ and d.
Substituting in equ (4) we get
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F(Ab,S) = Sbt-mDAma-ma 4 S, (45)
where D = dc'm, The sensitivity indices (équs (11) and (12)) are then

os = 1/[1-(1-n)(1-m)] (46) |
and

0y = (1-m)/[1-(1-n)(1-m)] (47)

It follows that the sensitivity index to changes in juvenile survival (S) is
greater than one unless (1-m)(1-n) < 0, which requires overcompensation in one of
the processes (i.e.,, m>1 or n>1). The case of double overcompensation (m>1 and
n>1) is very complex (Rodriguez 1988, Onyiah and Nisbet, in prep.) since multiple
equilibria can occur; thankfully there is no evidence to suggest that this is likely in

the populations under study. The expression for sensitivity to changes in b is of.

interest since it includes the only case we studied (case 3(b)) where total

compensation was plausible. We see that the results of that section appear quite
robust: perfect compensation occurs with m=1 irrespective of the other

compensation via adult fecundity.

The above analysis is rather superficial, but it adds some credibility to the
conclusions derived from consideration of one effect at a time. Further support
comes from a few further calculations with‘different_ functions. The only situations
we have found where compensatory mechanisms acting together significantly reduce
the adult loss occur in models where one of the mechanisms was density dependent

adult mortality, which we concluded in section 2 was unlikely.
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3.5. Implications of the Models

The overall message from these models is that compensatioh will not prevent
a reduction in the average abundance of adult fish, unless SONGS affects early
stages and late juveniles compensate perfectly. We know of no reason to expect
much compensation in late juveniles in the species of concern, and what little is

known about their ecology suggests compensation is less than perfect (Section 2).

The present suite of "strategic models” does not provide an unambiguous
pointer to the likely magnitude of the decline in adult density caused by SONGS-
induced death of a specified fraction of the immatures. However, we cannot escape
the conclusion that all "optimistic" outcomes (fractional decline in adult stock that is
significantly less than the fractional AEL) appear to demand mechanisms which
have not been proved in any marine fish anywhere. Still, compensation holding the
percentage loss in adult stock to about the same as the percentage AEL seems
plaﬁsible: more plausible if several compensafory mechanisms operate
simultaneously, and still more if one of these is adult survival. Although we have
not tried to model in detail the case where the affected fish is a fodder fish and
there is compensation in the predator fish, it appears that much of the loss may be
“transferred" from the fodder fish to the predator, and the predator’s percentage loss
could be as large as the loss that would be experienced by a single species affected
directly. |
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